
SIMULATION-BASED LEARNING IN KNOWLEDGE-BASED CONTROLLERS

Phillip D. Stroud
LAUR-96-1987, Proc. 1996 IEEE Int’l Symposium on Intelligent Control, pp. 168-174, Sept 1996.

Los Alamos National Laboratory, Technology and Safety Assessment Division
Mail Stop F607, Los Alamos, NM 87545

stroud@lanl.gov

Abstract

A methodology is presented to transform knowledge-based
controllers into adaptive structure representations. These
adaptive controllers are then evolved using automatic
directed search methods, where the performance of the trial
controllers is evaluated through simulation in a synthetic
environment. This automatically acquired knowledge is
incorporated back into a revised knowledge-based
controller. This process is developed and demonstrated
using the flight and fire controllers of a simulated airborne
laser system as a testbed.

Introduction

An important application for intelligent controllers is
found in the world of simulation. In a synthetic
environment built of interacting object-oriented actors, the
use of intelligent controllers can transform the simulation
into an entirely new tool. Simulation actors can be
developed that emulate the behavior of human operators.
This allows economic exploration of systems which would
otherwise require the use of very expensive “human in the
loop” simulation facilities. In addition, controllers can be
constructed that learn, in an automatic way, from within a
simulation environment. Controllers can “discover” new
and better behaviors. They also have the capacity to adapt
their behavior to new scenarios or changing conditions.

A controller is a part of an actor that decides which
behavior to invoke, using data from its sensors. An
adaptive controller maintains an internal representation that
allows prediction of the effects of its various behaviors. It
can change its input-output mapping based on its
understanding of external conditions. An intelligent
controller can generate new mappings, and form an
evaluation of how good they are.

The approach, in essence, is to investigate how various
kinds of rule or knowledge-based controllers can be
represented by useful adaptive structures. A rule-based
controller, or ruleset, maps the possible object and
environment states into a set of object behaviors. The
ruleset often consists of a set of IF-THEN-ELSE rules.
Alternatively, the ruleset may perform this mapping by an
algorithmic process.

An adaptive structure is an alternative representation of the
state-behavior mapping to that provided by the ruleset.
Three features characterize those adaptive structures which
are useful for an intelligent controller. First, the structure
must be capable of representing vast numbers of alternative
rulesets, both similar and radically different from the

original ruleset. Second, the adaptive structure must be
easily trained to mimic a given original ruleset. Finally,
the adaptive structure must be transparent, so that the
meaning of any changes can be easily extracted and
converted into a revised ruleset.

After conversion of a ruleset into an adaptive structure, a
simulation environment is used to evolve the adaptive
structure to find improved controllers. A second
component of this investigation is an evaluation of various
directed search methods. Because simulation based
evaluation of the controller performance is relatively
expensive, efficient search methods are essential.

The methodology was developed using an airborne laser
(ABL) object in a theater ballistic missile defense
simulation as a testbed. The airborne laser is a defensive
system for destroying theater ballistic missiles during their
boost phase. The airborne laser flight and fire controllers
were used to demonstrate the process of transformation of a
ruleset to an adaptive structure, the simulation based
directed search for improved behavior, and the extraction of
knowledge thus obtained.

Simulation Based Performance Evaluation

A simulation package ELASTIC (Evolutionary Los
Alamos Simulation-based Training for Intelligent
Controllers) was constructed to evaluate the performance of
various controllers. The kernel of the simulation evaluates
the number of missiles killed in a sortie. In a sortie, an
airborne laser flies to its designated loiter area and begins
surveillance. Theater missiles are launched at unknown
times, from unknown launch locations, and to unknown
targets. The launch zone, target zone, number and type of
missiles are selected for consistency with a scenario of
interest. ELASTIC generates a random missile launch
script consistent with the scenario. The airborne laser is
flown with a flight controller that can be either a script, a
rule-based controller, or an adaptive structure. The missiles
are flown with a 4 degree-of-freedom trajectory model, in
order to obtain sufficient fidelity. ELASTIC maintains a
track file of all the missiles currently in boost phase. A fire
controller is used to select the next target, again with
options for using rule-based or adaptive structure
controllers. A high fidelity laser atmospheric propagation
model is used to determine whether a lethal fluence is
delivered to a missile before burn-out, again to provide
adequate fidelity.

The laser power, wavelength, beam director aperture,
pointing jitter and adaptive optics system were arbitrarily
selected to provide partial coverage of the launch zone. The
launch zone was taken to extend from 200km to 400km

2

ahead of the front of the ABL loiter box, with a width of
300 km. The loiter box width is 240 km. The plane
maintains a constant altitude of 41kft, flies at Mach 0.85,
and has a level flight minimum turning radius of 24.8 km.
A nominal salvo consists of 110 missiles, with a spread in
the missile range from about 400 to 600 km.

In order to obtain a statistically significant measure of
performance for a given controller, many independent
sorties must typically be simulated. For example, if the
true mean kill probability was 50%, it requires the
evaluation of 10,000 independent missile engagements to
obtain an estimate with a 0.5% standard deviation in the
error of the sample mean kill probability. ELASTIC
generates and simulates enough sorties to give the desired
statistical significance.

The Airborne Laser Flight Controller

The airborne laser flight control system has several
conflicting objectives. First, it has to keep the plane
within a certain rectangular region of air space. If the plane
ventures through the front of this loiter box, the ABL is
vulnerable to surface to air missiles. The sides of the box
are set by the necessity to have flight corridors reserved for
other air operations. The box width is typically 200 to
300 km. The second flight controller objective derives
from the shape of the ABL field of fire. The field of fire
of an ABL is cut off at about 115 degrees back from the
nose of the plane, because of the physics of the air flow
boundary layer around the turret, and the geometry of the
plane. The ABL must fly to keep the field of fire over the
launch zone to the greatest extent possible. Since the
plane can turn at roughly two thirds of a degree per second
without losing altitude, and there might be up to a minute
available from the detection of a missile to the burnout of
the missile, the ABL can greatly improve its performance
by turning toward targets that are launched behind the field
of fire. While turning to the target, the plane has to avoid
leaving its assigned box. Another fire controller objective
is to keep the plane as close to the threat area as possible
without violating other constraints. The deliverable
intensity drops off with range, so the kill probability per
unit time is greater at closer range.

Knowledge-based ABL flight controller
In the past, two methods have been used to control the
flight of an airborne laser platform within the context of a
theater missile defense simulation. In three major
computer simulations [1]-[3], the ABL is assigned a
scripted orbit, such as a figure-eight, bow-tie or racetrack
pattern. This approach is incapable of turning the plane
towards a target, and then continuing in a sensible orbit.
The ISSAC-ABEL simulation [2] allows the plane to yaw
to the target, without leaving its scripted flight path. The
EADSIM [3] simulation extends the field of fire as a
substitute for turn to target capability. If properly
implemented, these approaches might produce good overall
performance estimates, but they introduce scenario
dependent errors that can’t be assessed from within their
own context. An ABL node in the Theater Air Command
and Control Simulation Facility (TACCSF) [4] has a
human pilot manually flying the plane in a flight
simulator. This real-time large scale simulation approach
does not offer the ability to assess performance against tens
or hundreds of thousands of trials.

The scripted orbit has a fundamental limitation: it can
never respond to the threat. The ability to turn towards
targets can greatly improve the ABL performance. There
are other reasons, such as self-defense, that a platform
would need to deviate from a scripted orbit. This
limitation can be overcome by a flight controller that is
able to issue sensible turn commands based on a requested
turn, if any, and the plane heading and position relative to
the box.

For constant altitude flight, the plane’s state is described
by three parameters: x and y, which give the location, and
b, the relative bearing or heading. The coordinate system
is defined relative to the loiter box, with the origin located
at the center of the front of the box. The y direction is
normal to the front of the box, toward the threat. The
positive x direction is to the right when facing the threat.
The relative bearing is the angle from the positive y
direction to the direction of the plane’s velocity, with
positive defined to the right. In addition, the controller
can receive a request for a turn. The fire controller in the
simulation issues a request to turn toward a target if there
is currently no target in the field of fire and there is at least
one otherwise engageable target outside the field of fire.
The request to turn is passed to the flight controller in a
Boolean parameter, which is true if there is a request for a
turn toward the threat, and false if there is no turn request.
The controller input thus consists of two real variables,
one real variable on the interval -π to π, and one Boolean
variable. For simplicity, the flight controller signal can be
constrained to two possible values: 1 for a maximum
forward turn and 0 for a maximum backward turn. Straight
line flight is obtained by alternating control signals.

A flight control ruleset has been developed. The
antecedent of each rule is evaluated in turn until one is
found to be true. The baseline flight control ruleset is
given by the following sequence:

front rule: IF (ahead of box) THEN turn backwards
front rule: ELSE IF (approaching box front from inside box)

THEN turn backwards
side rule: ELSE IF (past or about to pass side) THEN turn

forward if possible
side rule: ELSE IF (past or about to pass side) THEN turn

backwards
retreat rule: ELSE IF (flying backwards) THEN turn forward
diagonal rule: ELSE IF (ahead of diagonal back to last resort

circle) THEN turn backward
request rule: ELSE IF (received a turn request) THEN turn

forward
setline rule: ELSE IF (ahead of baseline) THEN turn backwards
default rule: ELSE turn forward

This ruleset can produce a variety of bow-tie orbits, and is
able to turn toward targets and then continue on sensible
looking flight paths.

3

Transformation of the ruleset into
an adaptive structure
Neural nets have been used to produce
circular and figure-eight orbits [5] -
[7]. The adaptive neural net controller
approach suffers from the drawback
that even if the net improves its
performance through evolutionary
training, it is difficult to translate the
new and improved net weights into a
new and improved ruleset. Methods
for extracting rules from neural net
weights require complex and computationally intensive
searches for combinations of inputs that completely
determine the net output [8], [9].

The ruleset can be cast into the form where the antecedents
are conjunctions of simple Boolean atomic expressions.
This is accomplished by defining a set of six abstracted
Boolean variables {v0, v1, v2, v3, v4, v5} that
characterize the flight controller inputs. The two
additional variables that describe the plane’s relation to the
front of the box are treated as constraints. These six inputs
are obtained directly from the ruleset antecedents:

v0: Is the plane past or about to pass a side of the box?
v1: Is the plane too close to the front to make a forward

turn?
v2: Is the plane headed forward of the max heading?
v3: Is the plane ahead of the diagonal back to the last

resort turning circle?
v4: Is the plane in front of the setline?
v5: Is there a request for a forward turn?

In terms of these Boolean variables, the ruleset output
control signal can be expressed as

IF (v0==1 && v1==1) THEN c=0;
ELSE IF (v0==1 && v1==0) THEN c=1;
ELSE IF (v2 == 0) THEN c=1;
ELSE IF (v3 == 1) THEN c=0;
ELSE IF (v5==1) THEN c=1;
ELSE IF (v4==1) THEN c=0;
ELSE c=1;

Since each of the six input variables can take two values,

there are 26 =64 possible input states, and the ruleset
assigns to each of them a control signal of either 0 or 1.
The ruleset can thus be expanded into a completely
equivalent set of 64 rules of the standard binary associative
memory format [13]. The first rule, for example, would
be

IF(v0=0 AND v1=0 AND v2=0 AND v3=0 AND v4=0 AND v5=0)
THEN c=1

Each of the 64 rules of the expanded equivalent ruleset can
be represented as a column of the following matrix.

The value of v0 is in the first row, and so on. The bottom
row shows the rule outputs. The original ruleset is
completely encapsulated in the string of 64 binary digits
that makes up the bottom row.

Conversely, each of the 264 = 1.8x1019 possible 64 bit
strings represent alternative controllers. A simple
reprioritizing of the rules within the ruleset, (such as
honoring a turn request before avoiding crossing an edge of
the box) would correspond to a different string of 64 bits.
Most strings represent controllers that fly poorly, flying
straight away from the box, in circles, or in strange,
surprising trajectories. With so many alternative
controllers, however, some of them are likely to perform
better than the original ruleset. Also, some controllers
would do better against particular classes of scenarios.

Evolutionary search for improved controllers
While any of these prospective controllers can be evaluated
with the simulation, an exhaustive search would not be
practical. Genetic algorithms [10] are ideally suited to
search for alternative controllers that perform better than
the original ruleset. The chromosome is the 64 bit string
that represents a controller. The often difficult step of
constructing a binary representation of the system [11] is
already accomplished. A first generation population of
controllers is constructed by generating a set of new 64 bit
strings, each of which is a variation of the original ruleset
string. Each variant is obtained by copying the ruleset
controller string, but allowing a small probability that any
bit will be flipped in the copy. Each new string will have
a few bits different from the original string. The original
ruleset is retained as a member of the original population.
The performance of these new controllers is then evaluated
with the simulation. The worst half of the original
population of controllers are discarded. Parents of the next
generation are selected from the remaining controllers, with
selection probability depending on rank order. A new
controller is formed from two parents by using single
point cross-over: the descendent receives the first part of its
bit string from one parent, and the last part from the other
parent, with a random location of the cross-over point. The
uniform cross-over method [12] was also tried, wherein the
offspring has an even chance of inheriting any given bit
from either parent. In this application, the two cross-over
methods perform about the same. The new controllers are
then mutated, with each bit having a small probability of
flipping. The performance of the newly generated and
mutated controllers is then evaluated, and they are sorted
into the surviving controllers to make up the new
generation. This process is iterated to obtain successive
generations. The mutation rate is taken as an adaptive
parameter.

v0 01

v1 0011001100110011001100110011001100110011001100110011001100110011

v2 0000111100001111000011110000111100001111000011110000111100001111

v3 0000000011111111000000001111111100000000111111110000000011111111

v4 0000000000000000111111111111111100000000000000001111111111111111

v5 0000000000000000000000000000000011111111111111111111111111111111

c 1110111011100100111001001110010011101110111001001110111011100100

4

Evolutionary training finds better controllers
The first attempt at evolutionary training used a training
set of 25 sorties against random independent trickle
launched salvos of 110 missiles each, for a total of 2750
simulated missile engagements. The baseline ruleset flew
the plane in such a way that 1468 missiles were killed, for
a single missile kill probability of 53.38%. The genetic
search method was used to look for better controller
strings, using the performance against the training set as
the performance measure. Using a population of 18
strings, a string was obtained after 12 generations
(requiring 117 performance evaluations) that was able to
kill 1522 missiles, for an improvement over the ruleset of
54 additional missiles killed, and a kill probability
increased to 55.3%. The chance of obtaining this result if
there had been no real improvement in the controller is
found via the student’s-t test to be 7%, so there is a 93%
confidence that the controller improved. Noting that
approximately 900 of the missiles are out of range
regardless of the flight path, the observed improvement is
quite impressive.

The evolved controller string can be used to directly
modify the baseline ruleset by adding three new rules at
the beginning of the ruleset:

IF(v0=0 AND v1=0 AND v2=1 AND v3=1 AND v5=0)
THEN c=1

IF(v0=1 AND v1=0 AND v2=0 AND v3=0 AND v4=0 AND v5=0)
THEN c=0

IF(v0=0 AND v1=0 AND v2=0 AND v3=0 AND v4=1 AND v5=0)
THEN c=0

The first of these, combining bits 12 and 28, issues a
forward turn command when the plane 0) is not past or
about to pass a side of the box, 1) has room to make a
forward turn, 2) is not headed too far backwards, 3) has
room to get to the diagonal back to the last resort turning
circle, and 5) had no request for a turn. The controller has
learned that under these circumstances, the plane should
not fly back to the setline, as it would have done under the
baseline ruleset. The other new rules incorporate the new
knowledge that under certain circumstances, it is better to
make a full rearward turn.

The controller evolved on the training set was then tested
against 100 independent random salvos of 110 missiles.
The baseline ruleset killed 5925 of the 11000 missiles in
this test set. The evolved controller killed 5990 of them.
The controller that was evolved on one set of salvos was
able to perform better than the ruleset on a completely
independent set of salvos, improving the kill probability
from 53.9% to 54.5%. The chance that this result would
be obtained with no actual improvement is found to be
19% via the student’s T test, giving an 81% confidence
that the controller did improve. Some of the adaptation
that the controller made to the training set is seen to be
specific to that training set, while some of the adaptation
generalizes to the new test set.

Another attempt to evolve a controller produced similar
results. This time, a set of 50 salvos of 110 missiles each
was used to evaluate the performance in the evolutionary

training process. The ruleset controller killed 2960 of
5500, for a kill probability of 53.8%. For this round of
training, there were 24 strings in the population. After 72
evaluations (requiring about a half hour each), a string had
been obtained that killed 3009 of 5500 missiles, for a kill
probability of 54.7%. When this new controller was
evaluated against an independent set of 100 salvos, it was
able to kill 5903 of 11000 missiles, where the baseline
ruleset controller got 5844. Again, about half of the
improvement obtained by evolving a controller against a
training set of salvoes is retained when the evolved
controller is used against an independent testing set of
salvos.

When the performance against a single scripted salvo is
used to evolve a controller, the performance can be
spectacularly enhanced, allowing as many as 8 extra kills
out of 110 engagements. However, the resulting
controllers are very specifically adapted to the training set,
and on average perform worse than the baseline ruleset
when evaluated against independent test sets. This result
points out the danger of developing tactics or rulesets
based on training against only a few scripted series of
launches, repeated over and over.

The Airborne Laser Fire Controller

The ABL fire controller has the function of selecting the
best target from a queue of boosting missiles in a track
file. The baseline rule-based fire controller uses an
algorithm to estimate which target in the queue could be
destroyed in the shortest amount of time. The time-to-kill
estimate is the sum of the slew time (to rotate the turret to
the direction of the target) and the dwell time (equal to the
lethal fluence divided by the deliverable intensity). The
deliverable intensity is a complicated function of a number
of parameters: the range to target, the target altitude, the
azimuth angle from the nose of the plane to the target, the
target aspect angle, target and platform velocities,
atmospheric conditions, etc. The fire controller output is a
pointer to the target with the shortest estimated time-to-
kill. This simple controller was able to perform at about
the same level as a human operator manually selecting
targets [1].

There are several obvious avenues for prospective
improvement of this baseline algorithm. The first employs
an estimate of the probability that a missile won’t burn out
prior to receiving a lethal fluence. The target selection is
then based on maximizing the kill probability per unit
time. A second avenue is chess-like. All targets in the
queue are evaluated for estimated time-to-kill or kill
probability per unit time. The best three or four are then
evaluated at higher fidelity, looking at all possible
permutations in firing order. The avenue of interest here,
however, is to transform the baseline algorithmic controller
into an adaptive structure, and then let the adaptive
controller learn better behavior automatically.

The first step in developing a useful adaptive
representation of the algorithmic controller is to identify
the important state parameters. Three parameters were
found to dominate: the range to target, the target elevation,
and the slew angle. The adaptive structure is like a black
box that takes these three inputs and produces a priority

5

value for each target in the queue. The black box has some
adjustable knobs that vary the mapping from input to
output. It differs from a black box, however, in that it is
transparent: the knob parameters have meaning.

The extended multi-linear expansion
A very simple adaptive structure configuration, the multi-
linear expansion, was selected for this evaluation. A linear
transformation of one input x to output y can be written
y = w1 1− x() + w2x . This is the equation of a line with
y-intercept of w1 and slope of w2-w1. It is also a linear
combination of two functions of x, namely h1=1-x and
h2=x. The expansion coefficients have meaning: w1 is the
output when the input is low (x=0), and w2 is the output
when input is high (x=1). This linear transform can be
extended to characterize more than two input states. For
example, if {w1,w2,w3} represent the output for low,
medium and high input values, the expansion can be
written
y = w1T x − 0() + w2T x − 0.5() + w3T x −1() , where

T(x) is a function that has a value of 1 for an argument of
0, and falls off to zero as |x| gets large. If T(x) is
symmetric, it can be called a radial basis function. If T(x)
is a triangular function (i.e. T(x)=Max(0,1-|x/b|) where b is
the triangle half-base) this expansion has a direct fuzzy
logic interpretation. The basis function can take other
shapes, such as Gaussian, top-hat, bi-triangular, or
trapezoidal. The transform can be seen as a linear
combination of localized basis functions, each centered at
some input value. Any functional mapping (except one
with an infinite number of discontinuities) can be
represented by this type of expansion, as long as enough
centers are used.

When there are more than one input parameter, the linear
expansion can be replaced with a multi-linear expansion. In
the experNet configuration [13], the expansion functions
are the 2D multi-linear combinations of a set of D input
parameters. For the case of 3 input dimensions, where the
input set is {x1, x2, x3}, the 8 expansion functions are

h1 = (1-x1) (1-x2) (1-x3)
h2 = x1 (1-x2) (1-x3)
h3 = (1-x1) x2 (1-x3)
h4 = x1 x2 (1-x3)
h5 = (1-x1) (1-x2) x3

h6 = x1 (1-x2) x3

h7 = (1-x1) x2 x3

h8 = x1 x2 x3

The xk can represent binary variables, in which case the hj
are also binary valued functions specifying whether or not
the input state matches a particular one of the 2D possible
states. The xk can also represent continuous real values in
the interval [0,1]. This can be interpreted as a fuzzy logic
version of the binary variable case, where the xk and hj are
interpreted as membership functions [14]. The above

expansion can be extended to more than two expansion
functions in each input dimension. An expansion of each
of three dimensions into “low”, “medium”, and “high”
fuzzy values would combine to give 27 expansion
functions. Each expansion function can be interpreted as a
basis function centered at some input state. The “net”
output is a linear combination of these functions of the

input vector, with the coefficient of the jth function being
called wj. The net output is

y = w jhj
j =1

H

∑

For the adaptive ABL fire controller, x1 represents the
ground range from the platform to the target. x1 = 0
corresponds to a ground range of 100 km, while x1 = 1
corresponds to a ground range of 700 km. The second state
parameter, x2, represents the target altitude above the
ground (x2 = 0 corresponds to a TBM altitude of 5 km
while x2 = 1 corresponds to a TBM altitude of 75 km).
The third, x3, is the normalized angle from the current
beam turret bearing to the target bearing. For x3 = 0, the
turret is pointed directly at the target, while for x3 = 1, the
turret would have to slew through 120 degrees to point at
the target.

Supervised training
After the adaptive structure is constructed, the set of
weight values must be found that lets the multi-linear net
output best mimic the original ruleset. This process is
known as supervised training. It does not require
simulation based performance evaluation. The standard
procedure is to generate a training set of input-output pairs
using the original controller. A search is then performed
for the set of weights that minimizes the sum, over all
pairs, of the squared difference between the net output and
the training set output value. In this form, supervised
training is equivalent to least squares regression.

A baseline training set of 1000 vector - output pairs was
generated, where each vector contains three parameters
selected from a uniform distribution in (0,1), and each
output is the corresponding kill rate. A little multi-linear
net was constructed, with the 8 expansion functions given
above. In addition, a larger multi-linear net was
constructed with 27 expansion functions, using low,
medium and high centers in each of three dimensions. A
first approximation to the set of weights is given by the
ruleset values obtained at the corresponding expansion
function centers.

The widely implemented neural net training method, back
propagation of error derivatives, is based on a gradient
descent optimization strategy. The weight vector undergoes
a process of iterative improvement. One of the training

vectors, say the ith one, is selected. The weight vector is
incremented in the direction opposite of the gradient of the

6

error in weight space. The size of the increment is taken as
some fraction (known as the learning rate) of the distance
to the minima that would obtain for a quadratic error
surface. By repeated cycling through the training set, the
weight vector might converge to a solution that minimizes
the mean square error over the whole training set.

Using an adaptive learning rate, gradient descent with
individually presented training vectors obtains a solution
with rms error within 1% of the optimal solution in five
complete cycles through the training set. This method
requires 5000 performance and gradient evaluations
whether H is 8 or 27, and whether the weights are
initialized to 0 or to the first approximation described
above.

Because of the simple structure of the multi-linear
expansion, more efficient gradient descent and matrix
inversion methods can be used. A much more efficient
gradient descent scheme is based on presentation of the
whole training set at once. This batch-mode gradient
descent obtains a solution with rms error within 1% of the
optimal solution with 20 performance and gradient
evaluations if the weights are initialized to zero, and with
8 performance and gradient evaluations when the weights
are initialized to the approximation described above (for
both the 8 and the 27 function expansion). Inversion of the
matrix of the normal equations, singular value
decomposition of design matrix, and singular value
decomposition of matrix of the normal equations were all
found to be much more efficient than gradient descent
methods.

Production training
The supervised training methods described above are not
applicable to simulation-based learning. The performance
surface (i.e. the simulation-based performance as a function
of the controller input variables) will have many local
optima, rendering gradient descent search strategies
useless.

The Pivot and Random Offset method starts with a set of
weights (the pivot), and evaluates the performance of the
net (or the sum of square errors relative to the original
ruleset for the case of supervised training). Then an offset
is obtained by applying a random increment to the pivot
weight vector, and the performance of the offset is
evaluated. If the performance is improved, the offset
weight vector is accepted as the new pivot. Otherwise, a
new offset is tried. If the pivot is replaced by an offset, a
new offset is attempted in the same direction as the
previous one. A simulated annealing approach has been
implemented to allow escape from local minima. The
offset is always accepted if its performance exceeds that of
the pivot. With simulated annealing, the offset is also
occasionally accepted when its performance is worse. The
probability of acceptance of a worse solution is given by a
Boltzmann distribution at “temperature” T, which has the
same units as the measure of performance. The temperature
is gradually reduced (using a power law annealing

schedule) until there is no likelihood of accepting a worse
offset.

A rough characterization of the efficiency of the pivot-
offset strategy can be obtained by applying it to the
supervised training task. The performance of this pivot-
offset method is stochastic, depending sensitively on the
starting random seed. For the 27 expansion function case
with 1000 training vectors, starting with weights
initialized to 0, a series of 13 runs required as few as 1844
performance evaluations, or as many as 3806 to converge
to a solution with rms error within 1% of the error of the
optimal solution. The mean requirement is 2588
evaluations. This compares with the 20 evaluations
required to reach this accuracy with the batch decent
method, although no gradients have to be evaluated.

If the initial set of weights is set equal to the true values
obtained at the corresponding expansion function centers,
the required number of performance evaluations ranges
from 967 to 2856, with a mean (in 13 runs) of 1985. This
gives some insight into the improvement in production
training that might be obtained by starting in the
neighborhood of a good answer. For the H=8 cases, the
number of required performance evaluations is 221 when
starting from initial weights of 0, and 143 when starting
from weights initialized to the target values at the
expansion function centers. Note that with traditional
multi-layer perceptron neural net configurations, there is no
way to initialize the weights to match a good solution.

Fire controller proof-of-principle
For evaluation of the performance of fire controllers, the
baseline scenario geometry as described above is used,
with a salvo consisting of 100 launches in a three minute
period. For this scenario, the shortest time-to-kill fire
controller destroyed 69 of 100 missiles. A simple eight-
parameter multi-linear expansion was trained to mimic the
shortest time-to-kill fire controller. It was able to destroy
68 out of the same 100 missiles. After the multi-linear
expansion weights were allowed to evolve, using a pivot-
offset directed search with simulation-based performance
evaluation, a new controller was obtained that destroyed 76
of the 100 missiles. Furthermore, this new set of weights
has direct interpretation as a revised target prioritizing
ruleset.

Conclusion

An approach has been developed for implementing
intelligent controllers into simulation environments. The
essence of the approach is to transform from an existing
rule or knowledge-based controller into a useful adaptive
structure. The adaptive structure must be capable of
representing the behavior of the original ruleset, as well as
a vast number of similar and radically different behaviors.
The adaptive controller is first trained to mimic the
original knowledge-based controller, using well
characterized supervised training methods. Directed search
strategies are then used to evolve the adaptive controller
towards improved performance, where the performance of

7

trial controllers is evaluated from within the simulation
environment. Finally, the improved controller is
transformed back to a revised ruleset so that people can
understand what it has learned.

Several directed search methods have been investigated for
this purpose. In the flight controller example, where
controller mapping is represented by a binary associative
map of high dimension, the methods of genetic
programming were found to be suitable and efficient. In
the fire controller example, the pivot-offset method with
simulated annealing was able to find improved controllers.
In both of these very different cases, automatic rule
discovery was able to produce significant improvements.

The problem space (the set of all possible input states
combined with the set of all attainable rule set mappings)
for these two testbed controllers was sufficiently large to
demonstrate the validity of the methodology. Much more
dramatic improvements in performance can be obtained by
using this methodology with more elaborate rule sets and
state representations. For example, the width of the loiter
box is fixed in the testbed flight control rule set. A trivial
extension of the state representation would allow the
controller to adapt the location of the box sides to best
cover a particular threat of interest. Likewise, a simple
extension of state representation to include pairs and
triplets of missiles in the track file would greatly extend
the problem space of the fire controller, and would with a
practical certainty include better fire controllers than the
simple testbed was able to represent.

Nothing in this process is specific to fire or flight
controllers, except the representation of the state and the
rule set mapping. This methodology of transforming a
knowledge-based controller to an adaptive structure,
evolving the weights automatically in the context of a
synthetic environment, and transforming back to an
improved ruleset, applies to a wide variety of systems.
Even a small automatically produced improvement in a
major expert system application could have a large pay-off,
financial or otherwise.

The methodology described in this paper provides for
automatic off-line simulation-based learning of knowledge-
based controllers. This methodology points to the next
step in the progression of intelligent controllers: real time
or on-line learning capability. We are now investigating
the extension of this methodology to achieve on-line
learning capability by incorporating the whole evolutionary
machinery and populations of behaviors and internal
simulations within a controller.

References

[1] TEMPEST (TACCSF Exploratory Model of
Performance, Strategy, and Tactics), numerical simulation
package copyright by S. Mortenson, Los Alamos National

Laboratory and the Regents of the University of California,
1992.

[2] ISSAC-ABEL, a proprietary simulation package
developed by W.J.Shaeffer and Associates.

[3] The Extended Air Defense Simulation (EADSIM)
User’s Reference Manual, US Army SSDC, Huntsville
Alabama, 1993.

[4] J. Brown, C. Heydemann, J. Soukup, “Theater Air
Command and Control Simulation Facility ABL Test 6,”
Airborne Laser Program report, Phillips Laboratory,
Albuquerque NM, 1994.

[5] D. Lin, J. Dayhoff, and P. Ligomenides, Trajectory
Production With the Adaptive Time-Delay Neural
Network,” Neural Networks, vol. 8, pp. 447-461, 1995.

[6] N. Toomarian, “Learning a trajectory using Adjoint
Functions and Teacher Forcing,” Neural Networks, vol. 5,
pp. 473-484, 1992.

[7] B. Pearlmutter, “Learning State Space Trajectories in
Recurrent Neural Networks,” International Joint Conf. on
Neural Networks, Washington, II, pp. 365-372, 1989.

[8] L. Fu, “Rule Generation from Neural Networks,” IEEE
trans. on Systems, Man, and Cybernetics, vol. 24, pp.
1114-1124, 1994.

[9] M. Craven, and J. Shavlik, “Using Sampling and
Queries to Extract Rules from Trained Neural Networks,”
Machine Learning: Proc. of the Eleventh International
Conf., W.W.Cohen & H.Hirsh, eds., Morgan Kaufmann,
San Francisco, 1994.

[10] D.E.Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning , Addison-Wesley
Publishing Co, 1989.

[11] J.R.Oliver, “Discovering Individual Decision Rules:
an Application of Genetic Algorithms,” Proc.5th
International Conf on Genetic Algorithms, S.Forrest ed.,
Morgan-Kaufman Publishers, San Mateo, CA, Jul 1993.

[12] L.J.Eshelman, J.D Schaffer, ”Crossover’s Niche,”
Proc.5th International Conf on Genetic Algorithms,
S.Forrest ed., Morgan-Kaufman Publishers, San Mateo,
CA, Jul 1993.

[13] C.Barrett, R.Jones, U.Hand, “Adaptive Capture of
Expert Knowledge”, Los Alamos National Laboratory
Technical Report LA-UR-95-1391, 1995.

[14] B.Kosko, Neural Networks and Fuzzy Systems ,
Prentice-Hall, 1992.

